

Only lipids: CARBON HYDROGEN BOTH ONVGEN Do not dissolve in water Do not provide structure to food products

VS.

Mercola.com

CARBOHYDRATES

Fats Oils Shortening Phospholipids Sterols

SLIDESMANIA.COM

PDS

Fat

Solid at room temperature
Generally highly saturated

Oil

- Liquid at room temperature
- Generally mono or polyunsaturated

Hydrogenated Products

- Adding hydrogen to unsaturated lipid to increase saturation
- Makes liquid oil solid

SLIDESMANIA.COM

Physical States of Lipids

Melting Point:

- Temperature which changes a solid to a liquid
- Dependent on amount of saturation
- Changes cooking properties

Solidification Point:

- Temp which all lipids in a mixture are in a solid state
- Refrigerated olive oil may solidify
- Causes cloudiness in refrigerated homemade dressings

Melting vs Solidification Points

Role of Fats (lipids) in Cooking

Six top reasons why fat is used in cooking

1. Fats serve as a <u>medium for heat transfer</u>

Deep Frying is usually a combination of carbohydrate and fat items, with fat acting as the heat

Smoke Point

The temperature at which fatty acids break apart and produce smoke (every fat is different)

Flash Point

Temperature at which product will flame

TYPE OF FAT	SMOKE POINT		
Safflower Oil	510°F/265°C	SMOKE PO	INTS OF FAT
Rice Bran Oil	490°F/260°C	Lard	370°F/185°C
Light/Refined Olive Oil	465°F/240°C	Avocado Oil (Virgin)	375-400°F/190-205°C
Soybean Oil	450°F/230°C	Chicken Fat (Schmaltz)	275°E/190°C
Peanut Oil	450°F/230°C	cincken rat (Sciinaitz)	373 F/150 C
Clarified Butter	450°F/230°C	Duck Fat	375°F/190°C
Corn Oil	450°F/230°C	Vegetable Shortening	360°F/180°C
Sunflower Oil	440°F/225°C	Sesame Oil	350-410°F/175-210°C
Vegetable Oil	400-450°F/205-230°C	Butter	350°F/175°C
Beef Tallow	400°F/250°C	Coconut Oil	350°F/175°C
Canola Oil	400°F/205°C	Extra-Virgin Olive Oil	325-375°F/165-190°C

The higher a fat's smoke point, the more cooking methods you can use it for. READ this Serious Eats article: What's a Smoke Point and Why Does it Matter?

2. <u>Tenderizer</u>:

- Fat shortens the molecule strands caused by flour
- Results in a more tender product
- Reason behind "shortening" name

3. Aerator

 Fat allows tiny bubbles to form when batters are beaten

4. Enhance Flavor

 Fat dissolves and disperses flavor compounds from other ingredients, such as vegetables

5. Lubricate food components Makes meat easier to chew Marbling:

Specks or streaks of fat in muscle tissue More marbling, more tender

Makes other foods seem to have more moisture Ex. Mayo or butter on sandwiches

6. Serve as liquids in <u>emulsions</u>

Definition: Mixture that contains a nonpolar lipid & a water-based liquid

Water: Polar (unequal sharing of electrons) Polar compounds will combine easily with each other

Lipids: Non-polar (equal or balanced sharing of electrons)

Examples of Emulsions: Butter Milk Bottled salad dressings Hollandaise sauce Mayonnaise

Emulsions

YOU'RE MY BUTTER HALF

Ranch

.

Emulsions

How does an emulsion happen?

Mixture will not stay mixed unless a compound that has a polar and non-polar end

Example:

 Egg yolks prevent oil and water from separating in mayo

https://www.youtube.com/watch?v=7Qi2Kzru36Q

EMULSION

vinaigrette

mayonnaise

molecular level

a mixture of hydrophillic and hydrophobic liquids

[Emulsifiers'] construct involves both hydrophobic and hydrophilic components-therefore, they can be the perfect bridge between water and oil. -Julia Stewart

PROCESS

unstable mix/emulsion - separates

stable mix/emulsion - doesn't separate

emulsifiers surround water and oil droplets within another liquid and prevent them from recombining or separating

Potential Problems with Fat in Food

Auto-oxidation:

- Complex chain reaction when lipids are exposed to oxygen; causes lipids to deteriorate
- More likely to occur in unsaturated oils

Rancidity:

- Form of food spoilage; not necessarily harmful to health, but has potential to be depending on product/time
- Unappetizing color and flavor changes

Problems with Fat in Food

Prevention of Auto-oxidation & Rancidity - Reduce oxygen exposure - Adding antioxidants (ex. Vitamins A, C, and E)

Functions of Lipids in Foods Physical States of Lipids

- Fat
 - _____ at room temperature
 - Generally highly _____
- Oil
 - _____ at room temperature
 Generally _____

Food Science, 8 points

Review & Explore: Submit to Canvas

Due Tuesday